Nafis Sir Chhaurahi

त्रिकोणमिति (Trigonometry)

सूत्र/अनुपातFormula
sin, cos, tan (0°, 30°, 45°, 60°, 90°)
θsinθcosθtanθ
010
30°12\frac{1}{2}32\frac{\sqrt{3}}{2}13\frac{1}{\sqrt{3}}
45°12\frac{1}{\sqrt{2}}12\frac{1}{\sqrt{2}}1
60°32\frac{\sqrt{3}}{2}12\frac{1}{2}3\sqrt{3}
90°10∞ (अपरिभाषित)
Fundamental Identitiessin2θ+cos2θ=1\sin^2\theta + \cos^2\theta = 1, sec2θtan2θ=1\sec^2\theta - \tan^2\theta = 1, csc2θcot2θ=1\csc^2\theta - \cot^2\theta = 1
Reciprocal Identitiessinθ=1cscθ\sin\theta = \frac{1}{\csc\theta}, cosθ=1secθ\cos\theta = \frac{1}{\sec\theta}, tanθ=1cotθ\tan\theta = \frac{1}{\cot\theta}
Ratio Identitiestanθ=sinθcosθ\tan\theta = \frac{\sin\theta}{\cos\theta}, cotθ=cosθsinθ\cot\theta = \frac{\cos\theta}{\sin\theta}
Complementary Anglessin(90θ)=cosθ\sin(90^\circ - \theta) = \cos\theta, cos(90θ)=sinθ\cos(90^\circ - \theta) = \sin\theta, tan(90θ)=cotθ\tan(90^\circ - \theta) = \cot\theta

Right Triangle Diagram

Right Triangle Diagram

All Exam Text

This section is for additional information or text related to exams. Customize it as needed.